
Reactive Programming in JavaScript

University of Parma

by Giuseppe La Gualano - 2019/2020

Reactive Manifesto
 Responsive: The system responds in a timely manner if at all possible.
 Resilient: The system stays responsive in the face of failure.

 Elastic: The system stays responsive under varying workload.
 Message Driven: Reactive Systems rely on asynchronous message-passing to

establish a boundary between components that ensures loose coupling, isolation
and location transparency.

...and more.

by Giuseppe La Gualano

https://www.reactivemanifesto.org/

What is Asynchronicity in JavaScript?
JavaScript is synchronous and single-threaded, but we can make it asynchronous.

setTimeout(function(){
 console.log('1');
}, 2000);

console.log('2');

-> 2 will be written to the console before 1. Because setTimeout is async.

by Giuseppe La Gualano

Sequential description of
asynchronous operations

An asynchronous operation will
terminate sometime in the future.

doA(function(aResult) {
 // do some stuff inside b then fire callback
 doB(aResult, function(bResult) {
 // ok b is done...
 });
});

Who promises that they will be
finished?

by Giuseppe La Gualano

Promise and Future
Similar concepts but not the same thing (except for JavaScript).

asynchronous operation : will terminate sometime in the future.
return : either a value or an error

meantime : we want to “declare” what to do next with the value (or the error)...
chaining : we would like to repeat this over and over again

by Giuseppe La Gualano

The Dark Side of Encapsulation

Promise and Future encapsulate a value that will eventually be
available in the future.

Promise : is the way to generate the value in an asynchronous manner.
Future : The Future is a Promise seen from the "consumer side".

It’s what we use to chain operations and react to value when it’s available.

 Promise.resolve("1").then(console.log); // then callbacks are always asynchronous
 console.log("2"); // Still 2 before 1

then does always schedule the callback function that you pass in for later.

by Giuseppe La Gualano

Problem: Callback hell

getData = function(param, callback){
 $.get('http://example.com/get/'+param,
 function(responseText){
 callback(responseText);
 });
} // '$' refers to JQuery library, it's just for example...

getData(0, function(a){
 getData(a, function(b){
 getData(b, function(c){
 getData(c, function(d){
 getData(d, function(e){
 // ... force us into a continuation passing style of execution
 });
 });
 });
 });
});

by Giuseppe La Gualano

http://dist-prog-book.com/chapter/2/futures.html

Solution: Invert the chain of responsibility

getData = function(param, callback){
 return new Promise(function(resolve, reject) {
 $.get('http://example.com/get/'+param,
 function(responseText){
 resolve(responseText);
 });
 });
}

getData(0).then(getData)
 .then(getData)
 .then(getData)
 .then(getData);

Now the caller is responsible for handling the result of the promise when it is resolved.

by Giuseppe La Gualano

file:///E:/OneDrive%20-%20Universit%C3%A0%20degli%20Studi%20di%20Parma/Universit%C3%A0/Magistrale/Primo%20anno/Paradigmi/Seminario/MARP/presentationmarp.md

Async-Await
There’s a special syntax to work with promises in a more comfortable fashion, called
“async/await”.

Simplifies sequential description of asynchronous operations
await : used to wait for value to be ready (just like .then())
async : must be declared for any function that need to use await

Can be used in conjunction with try-catch blocks

async function sequence() {
 await promise1(50);
 await promise2(50); // executes only after promise1 is resolved, like ".then"
 return "done!";
} // Not very good... We have to make all executions parallel!

by Giuseppe La Gualano

Paradigm comparison
1 Promise -> 1 Event.
How to deal with more events?

Single Multiple

Pull Function
List, Array,
Iterator, etc.

Push Promise Observable

by Giuseppe La Gualano - Photo of http://blog.enixjin.net/

http://blog.enixjin.net/

But first... Classes Constructor
The constructor method is a special method for creating and initializing an object
created within a class.

Think of it as a collection of (asynchronous) events.

class Person {
 constructor(name) {
 this.name = name;
 }

 showPerson() {
 console.log('Hello, my name is ${this.name}');
 }
}

const Giuseppe = new Person('Giuseppe');
Giuseppe.showPerson();

by Giuseppe La Gualano

Observable
A design pattern used to inform some observers about “changes”
occurred to a subject.

Think of it as a collection of (asynchronous) events.

Observables are lazy (or cold), no execution until someone subscribes, either
synchronously or asynchronously.

class Observable {
 constructor(functionThatTakesObserver){
 this._functionThatTakesObserver = functionThatTakesObserver;
 }
}

subscribe(observer) {
 return this._functionThatTakesObserver(observer);
}

https://www.oodesign.com/observer-pattern.html

How it works

JavaScript's Lambda and Arrow Functions
In JavaScript pre-ES6 we have function expressions which give us an anonymous
function (a function without a name).

var anon = function (a, b) { return a + b };

In ES6 we have arrow functions with a more flexible syntax that has some bonus
features and gotchas.

var anon = (a, b) => a + b;
// or
var anon = (a, b) => { return a + b };

One of the major advantages of arrow functions is that it does not have its own value.
It's this is lexically bound to the enclosing scope.

by Giuseppe La Gualano

Subject
Observable is for the consumer, it can be transformed and subscribed:

observable.map(x => ...).filter(x => ...).subscribe(x => ...)

Observer is the interface which is used to feed an observable source:

observer.next(newItem)

We can use a Subject which implements both the Observable and the Observer
interfaces:

var source = new Subject();
source.map(x => ...).filter(x => ...).subscribe(x => ...)
source.next('first')
source.next('second')

Subscribe/Unsubscribe

Img courtesy Fabio Strozzi

Methods and Notable functional operators

You can extend it with functional programming methods (map, reduce, etc.).

merge : merges Observables one another.

mergeAll : like flatten.
switchMap : like flatMap.
buffer : groups consecutive events into arrays.
window : just like buffer but emits Observables instead of arrays.

debounce : delays emission but drops previous pending events.
throttle : like debounce but emits recent events at a fixed rate.
timeout : errors if Observable does not emit a value in given time span.

by Giuseppe La Gualano

file:///E:/OneDrive%20-%20Universit%C3%A0%20degli%20Studi%20di%20Parma/Universit%C3%A0/Magistrale/Primo%20anno/Paradigmi/Seminario/MARP/presentationmarp.md

Streams API
You can create data streams of anything: variables, user input, properties, caches,
structures. you can then observe what is happening and react consistently.

by Giuseppe La Gualano

https://developer.mozilla.org/en-US/docs/Web/API/Streams_API

Q & A
 Reactive Programming in JavaScript

by Giuseppe La Gualano

