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Reactive Manifesto
 Responsive: The system responds in a timely manner if at all possible.
 Resilient: The system stays responsive in the face of failure.

 Elastic: The system stays responsive under varying workload.
 Message Driven: Reactive Systems rely on asynchronous message-passing to

establish a boundary between components that ensures loose coupling, isolation
and location transparency.

...and more.
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What is Asynchronicity in JavaScript?
JavaScript is synchronous and single-threaded, but we can make it asynchronous.

setTimeout(function(){ 
   console.log('1'); 
}, 2000); 

console.log('2'); 

-> 2 will be written to the console before 1. Because setTimeout is async.
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Sequential description of
asynchronous operations

An asynchronous operation will
terminate sometime in the future.

doA(function(aResult) { 
    // do some stuff inside b then fire callback 
    doB(aResult, function(bResult) { 
        // ok b is done... 
    }); 
}); 

Who promises that they will be
finished?
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Promise and Future
Similar concepts but not the same thing (except for JavaScript).

asynchronous operation : will terminate sometime in the future.
return : either a value or an error

meantime : we want to “declare” what to do next with the value (or the error)...
chaining : we would like to repeat this over and over again
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The Dark Side of Encapsulation

Promise and Future encapsulate a value that will eventually be
available in the future.

Promise : is the way to generate the value in an asynchronous manner.
Future : The Future is a Promise seen from the "consumer side".

It’s what we use to chain operations and react to value when it’s available.

 Promise.resolve("1").then(console.log); // then callbacks are always asynchronous 
 console.log("2");  // Still 2 before 1 

then  does always schedule the callback function that you pass in for later.

by Giuseppe La Gualano



Problem: Callback hell

getData = function(param, callback){ 
  $.get('http://example.com/get/'+param,     
    function(responseText){       
      callback(responseText); 
    }); 
} // '$' refers to JQuery library, it's just for example... 

getData(0, function(a){ 
  getData(a, function(b){ 
    getData(b, function(c){ 
      getData(c, function(d){ 
        getData(d, function(e){ 
         // ... force us into a continuation passing style of execution 
        }); 
      }); 
    }); 
  }); 
}); 
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Solution: Invert the chain of responsibility

getData = function(param, callback){ 
  return new Promise(function(resolve, reject) { 
    $.get('http://example.com/get/'+param,           
    function(responseText){ 
      resolve(responseText); 
    }); 
  }); 
}  

getData(0).then(getData) 
  .then(getData) 
  .then(getData) 
  .then(getData); 

Now the caller is responsible for handling the result of the promise when it is resolved.
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Async-Await
There’s a special syntax to work with promises in a more comfortable fashion, called
“async/await”.

Simplifies sequential description of asynchronous operations
await : used to wait for value to be ready (just like .then())
async : must be declared for any function that need to use await

Can be used in conjunction with try-catch blocks

async function sequence() { 
  await promise1(50);   
  await promise2(50); // executes only after promise1 is resolved, like ".then" 
  return "done!";  
} // Not very good... We have to make all executions parallel!

by Giuseppe La Gualano



Paradigm comparison
1 Promise -> 1 Event.
How to deal with more events?

Single Multiple

Pull Function
List, Array,
Iterator, etc.

Push Promise Observable
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But first... Classes Constructor
The constructor method is a special method for creating and initializing an object
created within a class.

Think of it as a collection of (asynchronous) events.

class Person {  
  constructor(name) { 
    this.name = name; 
  } 

  showPerson() { 
    console.log('Hello, my name is ${this.name}'); 
  } 
} 

const Giuseppe = new Person('Giuseppe'); 
Giuseppe.showPerson(); 
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Observable
A design pattern used to inform some observers about “changes”
occurred to a subject.

Think of it as a collection of (asynchronous) events.

Observables are lazy  (or cold), no execution until someone subscribes, either
synchronously or asynchronously.

class Observable { 
    constructor(functionThatTakesObserver){ 
      this._functionThatTakesObserver = functionThatTakesObserver; 
    } 
} 

subscribe(observer) { 
  return this._functionThatTakesObserver(observer); 
} 

https://www.oodesign.com/observer-pattern.html


How it works



JavaScript's Lambda and Arrow Functions
In JavaScript pre-ES6 we have function expressions which give us an anonymous
function (a function without a name).

var anon = function (a, b) { return a + b }; 

In ES6 we have arrow functions with a more flexible syntax that has some bonus
features and gotchas.

var anon = (a, b) => a + b; 
// or
var anon = (a, b) => { return a + b }; 

One of the major advantages of arrow functions is that it does not have its own value.
It's this is lexically bound to the enclosing scope.
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Subject
Observable is for the consumer, it can be transformed and subscribed:

observable.map(x => ...).filter(x => ...).subscribe(x => ...) 

Observer is the interface which is used to feed an observable source:

observer.next(newItem) 

We can use a Subject which implements both the Observable and the Observer
interfaces:

var source = new Subject(); 
source.map(x => ...).filter(x => ...).subscribe(x => ...) 
source.next('first') 
source.next('second') 



Subscribe/Unsubscribe
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Methods and Notable functional operators

You can extend it with functional programming methods (map, reduce, etc.).

merge : merges Observables one another.

mergeAll : like flatten.
switchMap : like flatMap.
buffer : groups consecutive events into arrays.
window : just like buffer but emits Observables instead of arrays.

debounce : delays emission but drops previous pending events.
throttle : like debounce but emits recent events at a fixed rate.
timeout : errors if Observable does not emit a value in given time span.
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Streams API
You can create data streams of anything: variables, user input, properties, caches,
structures. you can then observe what is happening and react consistently.
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Q & A 
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