
Classification

DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA

Gianfranco Lombardo, Ph.D
gianfranco.lombardo@unipr.it

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P,
if its performance at tasks in T, as measured by P, improves with experience E”.
(Mitchell 1997)

● Learning is our means of attaining the ability to perform automatically a task

● Task T : A task that is difficult to be solved with fixed programs written and
designed by human beings

● Experience E: Collected data that describes the input of our ML system and the
main source of information to exploit in order to learn

● Performance measure P: How good is the model? Is it able to solve the
problem for real? Obviously depending on the task we have to choose a
different measure

Review: What do we mean by learning?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Classification: The system is asked to specify which of k categories some input
belongs to. For example:
○ Given a sentence (maybe a tweet) the system should determines if it express a

positive or negative or neutral feeling (K=3)
○ Given an image where it can be a dog or a cat, we want to determine with the system

which one is present (K=2)

● To solve this task, the learning algorithm is usually asked to produce a function
y= f(x): Rn → {1,...,k}
○ So the model takes an example x as input and after some processing f(x) it returns a

value y that is one of the k categories the example x should belong to.

Today: Classification

model (function) f[x1,x2,x3,..,xn]

Example Features
Category predicted by
the model

Y =Cat

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● We want to estimate a parametric
function F(X,W) that maps our input
features X to one or more of our target
labels in y, where y is an element of a
limited set and is called class.

● The goal is to find the decision
boundaries in the features space

Model for classification task

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● We want to train a model to predict if a tumor is benign or malignant using a
single feature (tumor size)

● y ∊ {0,1} : 0 is malignant , 1 is benign
● X has only one feature

Can we adapt Linear Regression for a classification task?

(Yes) 1

(No) 0

Tumor size

Malignant ?

X X X X

X X X X

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● We can find the best Y = WT X from our dataset and then select a threshold
over y to classify when the tumor is malignant or not

Can we adapt Linear Regression for a classification task?

(Yes) 1

(No) 0

Tumor size

0.5

X X X X

X X X X

Y = WT X

t

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Does it really work? Or we were just lucky? What happens if i add another
training example ?

Can we adapt Linear Regression for a classification task?

(Yes) 1

(No) 0

Tumor size

0.5

X X X X X

X X X X
t

These are now misclassified

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Moreover, linear regression returns a y that is not bounded between 0 and 1

● We want a hW(X) bounded: 0<= hW(X) <= 1, the simplicity of a linear
regression and a good fit to our binary classification task

○ y = hW(X) = 𝞼(WTX)

● Logistic regression (sigmoid) can be the perfect solution

Logistic regression

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Logistic function

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Logistic regression (despite the name) is a classification algorithm
● The name is due to the past when the logit function was invented and used as

a regression algorithm
● As a classification algorithm it estimates the probability that an instance

belongs to a class or not (Binary classification).
○ If the estimated probability is greater than 50% then the model predicts

that class

● The logistic function is a sigmoid function (S-shape) that outputs a number
between 0 and 1

Logistic Regression

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Logistic function

● Just like a linear regression model, a logistic regression computes a weighted
sum of the input features plus a bias term

● But instead of returning the result directly, it outputs the logistic of this result
○ So when the probability that an instance belongs to the positive class is

computed, the y* can be computed easily:
■ Class 0 (or negative) if p < 0.5
■ Class 1 (or positive) if p>= 0.5

● When possible labels are more than two, several binary classifier are built to
identify the correct class

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● In our case, hW(X) with Logistic regression estimated the probability that y=1 on
input X

● For example, If hW(X) = 0.7 for a sample x , It means that patient has the
probability of 70% of having a malignant tumor.

● If you are familiar with probability, we can see hW(X) in the following way:

○ hW(X) = P(y=1 | X; W)

○ The probability that y=1 given X parametrized by W

Logistic function

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Decision boundaries

● We predict y=1 when hW(X) >= 0.5 that means when WTX >=0 and vice-versa
for y=0
○ Remember y = hW(X) = 𝞼(WTX) with

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Decision boundaries

● Suppose the case we have the dataset in figure, with 2 features X1 and X2
○ We trained a Logistic regression and we found that the best parameters W

are respectively W0= -3 , W1=1 , W2=1

hW(X) = g(w0 + w1x1 + w2x2)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Decision boundaries

● We predict y=1 when -3 + x1 + x2 >= 0
○ So when x1 + x2 >= 3

The green line is an example of a
decision boundary

Note: Decision boundary is not a property of
the training set!
Training set must be used to fit the
parameters w!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Non-linear decision boundaries

hW(X) = g(w0 + w1x1 + w2x2 +

 w3 x
2

 1+ w4 x
2

 2)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Learning: An optimization problem (again)

How to choose parameters W ?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Learning: An optimization problem (again)

This cost function definition
introduces a non linearity that
makes the function we want
to minimize non-convex

With a Non-convex function, there are not guarantees to converge in a global
optimum

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Learning: An optimization problem

Let’s define the cost function in the following way to have a convex function

yi
*

Cost = 0 if y=1 and y*=1
Cost -> ∞ if y=1 and y*= 0

We will penalize learning algorithm by a very
 large cost

yi
*

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Learning: An optimization problem

Merge Cost in a single function and apply Gradient Descent

Repeat until convergence {

}

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Commonly the world is not binary and we want to classify our data in more than two
classes!
○ For example: Iris dataset: Versicolor, Virginica, Setosa (3 classes!)

● In this case we say that the problem is multi-class

● Another case is when we want to predict for each sample more than one label and
these are not mutually exclusive
○ Example Face Recognition
○ Example Topic detection: we want to classify technical documentation and each

document can be associate to more than one label
■ A paper can be classified about its topic “Computer science” and then also

with its subtopics “Artificial Intelligence”
○ Every sample can be associated to one or more labels
○ It is a more complex task and we won’t talk about it in this course but remember

that is called a multi-label task

Multi-class classification

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Example: We have three classes to be predicted:

● We train a Logistic classifier, but wait! Logistic classifier can predict only on a
binary case!

● The solution is the One-vs-ALL (One-vs-Rest) approach:
○ We train one classifier for each class that should be recognized. If three

classes -> Three classifiers
○ The first one will recognize if the sample is a dot or other, the second one

if the sample is a square or other, the third if the sample is a triangle or
other.

● So we have a model hw
(i)(x) = P(y=i | x; w) where i is the class, i=1,2,3

Multi-class classification: One-vs-ALL

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Considering hw
(i)(x) = P(y=i | x; w) where i is the class, i=1,2,3

● Try to classify a sample considering the probabilities of each classifier:
○ P(y= | x; w)

○ P(y= | x; w)

○ P(y= | x; w)

● To make a prediction we have to pick the class i that maximize hw
(i)(x)

Multi-class classification: One-vs-ALL

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Multi-class classification: One-vs-ALL

x2

x1

x2

x1

x2

x1

x2

x1

Dataset

hw
1(x)

hw
2(x)

hw
3(x)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Evaluating a classifier is often significantly tricker than evaluating a regressor
● Several metrics are possible but their use depends on the case:

○ Confusion matrix
○ Accuracy
○ Precision
○ Recall
○ F-1 measure
○ ROC Curve

● So…grab a coffee before

How to evaluate a classification task?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

BREAK

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Number of Instances
150 (50 in each of three classes)

Number of Attributes
4 numeric, predictive features and the class

Features Information
● sepal length in cm
● sepal width in cm
● petal length in cm
● petal width in cm
● class:

○ Iris-Setosa
○ Iris-Versicolor
○ Iris-Virginica

Example: Iris plants dataset

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Confusion matrix

● The diagonal elements represent the number of points for which the
predicted label is equal to the true label. The off-diagonal elements are
those that are mislabeled by the classifier.

● Perfect classification: diagonal matrix
Total Predicted

Iris-setosa Iris-versicolor Iris-virginica

Real
class

Iris setosa 14 1 1

Iris-versicolor 0 16 0

Iris-virginica 0 1 15

Accuracy = (14+16+15)/48
= 0,9375

from sklearn.metrics import confusion_matrix
confusion_matrix(y_true, y_pred)

from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● To evaluate a classification model we can use the accuracy

● The accuracy is defined as the ratio among the number of correct predictions
over the total number of predictions

● The accuracy is often expressed as a percentage

● If the test-set is unbalanced we must use other metrics

Accuracy

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Suppose you want to classify if in an image there is a cat or a dog

● Your dataset has 800 images of cats and 200 images of dogs

● We use 100 images for the test, but in this test-set we randomly selected:
○ 90 cats
○ 10 dogs

● The accuracy on the test-set is 90%
○ What does this accuracy mean?
○ If I use a “dummy” script that says every time “cat” without any learning it

reaches the same accuracy
○ But if the test-set were balanced the “dummy” script would reach only

50% of accuracy

Accuracy: Balanced test-set required

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● If I use a “dummy” script that says every time “cat” without any learning it reaches
the same accuracy
○ But if the test-set were balanced the “dummy” script would reach only 50% of

accuracy
○ That’s why the test-set MUST BE BALANCED if you want to measure the

accuracy!

● What about the training-set ? Do we have to balance also it ?
○ It depends, if the training-set is unbalanced probably the less representative

class will be less learnt by the model
○ It means that the model will probably predict that class less than the others

because it will be less confident with that class
○ Usually it is better to have an almost balanced training-set, but sometimes we

could desire to predict a label less than another
○ So finally, the answer it remains: It depends…

Accuracy: Balanced test-set required

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● We need some metrics that does not take into account only how many times the
classifier gives the correct prediction in general but a metric we can compute for
each class

● Let M be the chosen metric
● Once we measured M for each class (so the we do not suffer the unbalanced

condition) we can resume a final measure for the classifier as an average among
the ones we got for each class. In some cases we can report only M for each class
without a final measure for the entire classifier

● The most simple case is the binary classification case where we can compute M
for the “positive” label or for both “positive” and then for the “negative”

If unbalanced test (validation)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Precision

● In a binary classification we can divide predictions in True Positive (TP),
True Negative (TN), False positive (FP), False Negative (FN)

Predicted

Negative Positive

Real
class

Negative TN FP

Positive FN TP

● It is like an accuracy on a single class

● Alone does not give enough information
since a trivial way to have a perfect
(precision = 1/1 = 100%) is to use a
test-set with just one example

● So usually precision is used along with
another metric called Recall that takes
into account the False negative

from sklearn.metrics import precision_score
precision_score(y_true, y_pred)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Recall and F-1 Score

● In a binary classification we can divide predictions in True Positive (TP),
True Negative (TN), False positive (FP), False Negative (FN)

Predicted

Negative Positive

Real
class

Negative TN FP

Positive FN TP

from sklearn.metrics import recall_score
recall_score(y_true, y_pred)

from sklearn.metrics import f1_score
f1_score(y_true, y_pred)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

To summarize

● Precision can be thought as the accuracy of the positive
predictions

● Recall (also known as Sensitivity or True positive rate)
is the ratio of positive instances that are correctly
detected by the classifier

● F1 is the harmonic mean of precision and recall.
Whereas the regular mean treats all values equally, the
harmonic one gives much weight to low values. As a
consequence we can get a high F1 score only if both
precision and recall are high

For the other metrics: see sklearn documentation:
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

How to choose among the metrics?

● It depends (again)
● F-1 is a good compromise because it favors classifiers that have similar precision and

recall. However, sometimes we would prefer to have a different value of precision and
recall

● Let’s make some examples (from A.Gèron):

● You trained a classifier to detect videos that are safe for kids
○ You would probably prefer a classifier that rejects many good videos (low recall) but

keeps only safe ones (high precision) rather than a classifier that has a much higher
recall but lets a few really bad videos show up in your product

● You trained a classifier to detect shoplifters on video-surveillance images
○ It is probably fine if your classifier has only 30% precision as long as it has 99%

recall
■ Sure, the security guards will get a few false alerts, but almost all shoplifters will

get caught!

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

import some data to play with
iris = datasets.load_iris()
X = iris.data # we only take the first two features.
y = iris.target

logreg = LogisticRegression()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, stratify=y)

Example of Logistic Regression

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Create an instance of Logistic Regression Classifier and fit the data.
logreg.fit(X_train, y_train)

Make predictions using the testing set
y_pred = logreg.predict(X_test)
acc= accuracy_score(y_test, y_pred)
print(acc)

Iris plants

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Machine learning model with a flowchart-like structure

● Each internal nodes represents a “test” on a feature of our dataset

● Final nodes (leaf) are the predicted class or value

● Available both for classification and regression tasks

What is a decision tree ?

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Example: Iris dataset

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier,plot_tree
import matplotlib.pyplot as plt

iris=load_iris()
X =iris.data[:,2:] #petal length and width
y = iris.target

clf=DecisionTreeClassifier(max_depth=2)
clf.fit(X,y)
plot_tree(clf, filled=True)
plt.show()

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Iris decision tree

● X[0] : petal length
● X[1]: petal width
● Gini: Impurity metric

○ A node is “pure” if Gini=0
■ If all training instances it applies to

belong to the same class

● Gini for the depth-2 left node is
1 - (0/54)2 - (49/54)2 - (5/54)2

 = 0.168
● Ratios corresponds also to output probabilities:

○ 0% for Iris-setosa
○ 90.7% for iris-Versicolor
○ 9,3% for iris-Virginica

True False

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Decision boundaries

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● CART (Classification and Regression Tree algorithm)
● Simple idea:

a. Splits the training set in two subsets using a single feature k and a
threshold tk (e.g., “petal length <= 2.45”)

b. To choose k and tk it looks for the purest subsets (weighted by their size)
minimizing a cost function

c. It stops once it reaches the maximum depth selected as a parameter

CART training algorithm

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Another impurity measure is the Entropy
○ In Thermodynamics is a measure of molecular disorder and it is zero when

molecules are well ordered
○ In Information Theory, it measures the average information content of a message

(Shannon’s theorems) and it is zero when all messages are identical
● In Machine Learning a set’s entropy is zero when it contains instances of only one

class.

● Most of the time choosing Gini or Entropy does not introduce a big difference. Giny is
usually faster to compute and tends to isolate the most frequent class in its own branch
of the tree, while Entropy tends to produce slightly more balanced trees

Gini VS Entropy

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● The algorithm splits each region in a way that makes most training instances
as close as possible to the value to be predicted

● In sklearn import DecisionTreeRegressor

Regression with Decision trees

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Regression with Decision trees

● The CART algorithm works exactly the same way as earlier, except that instead
of trying to split the training set to minimize the impurity, it now tries to split to
minimize the Mean Squared Error (MSE)

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● Decision trees make less assumptions about the training data with respect to linear
models

● If left unconstrained the tree structure will adapt itself to the training-set very well !
○ Actually, most of the time it overfits the training-set !

● Decision trees are often called nonparametric models
○ Not because they don’t have any parameters but because the n° of parameters is

not determined prior to training
○ The model structure is free to stick closely to the data

● On the opposite, a parametric model (such as linear model) has a predetermined
number of parameters, it has a limited degree of freedom and that is useful to reduce
the overfitting (but increasing the risk of underfitting)

Problems: Overfitting

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● One solution can be reduce the degree of freedom of the model during the
training phase (Regularization)
○ Select a max depth
○ Select a a minimum number of samples a leaf node must have
○ Select a max feature number that are evaluated for splitting each node

○ Pruning: First training the tree without restrictions and then deleting
unnecessary nodes.
■ For example, a node whose children are all leaf nodes can be

considered unnecessary if the purity improvement it provides it si not
statistically significant (the improvement is purely random and it’s
measured with a p-value

Solution: Regularization

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

Regularization with min sample leaf

 Gianfranco Lombardo, Ph.D (gianfranco.lombardo@unipr.it)

● The DecisionTreeClassifier offers the following parameters:

○ min_samples_split: Select a a minimum number of samples a leaf node
must have before it can be split

○ min_samples_leaf: Minimum number of samples a leaf node must have

○ min_weight_fraction_leaf: Same as min_samples_leaf but expressed as
a fraction of the total number of weighted instances

○ max_leaf_nodes: Maximum number of leaf nodes

○ max_features: Maximum number of features that are evaluated for
splitting each node

Regularization in Sklearn

