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● “A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, 
if its performance at tasks in T, as measured by P, improves with experience E”. 
(Mitchell 1997)

● Learning is our means of attaining the ability to perform automatically a task

● Task T : A task that is difficult to be solved with fixed programs written and 
designed by human beings

● Experience E: Collected data that describes the input of our ML system and the 
main source of information to exploit in order to learn

● Performance measure P: How good is the model? Is it able to solve the 
problem for real? Obviously depending on the task we have to choose a 
different measure

Review: What do we mean by learning?
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● Classification: The system is asked to specify which of k categories some input 
belongs to. For example:
○ Given a sentence (maybe a tweet) the system should determines if it express a 

positive or negative or neutral feeling (K=3)
○ Given an image where it can be a dog or a cat, we want to determine with the system 

which one is present (K=2)

● To solve this task, the learning algorithm is usually asked to produce a function                 
y= f(x): Rn → {1,...,k}
○ So the model takes an example x as input and after some processing f(x) it returns a 

value y that is one of the k categories the example x should belong to.

Today: Classification

model (function) f[x1,x2,x3,..,xn]

Example Features
Category predicted by 
the model

Y =Cat
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● We want to estimate a parametric 
function F(X,W) that maps our input 
features X to one or more of our target 
labels in y, where y is an element of a 
limited set and is called class.

● The goal is to find the decision 
boundaries in the features space

Model for classification task
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● We want to train a model to predict if a tumor is benign or malignant using a 
single feature (tumor size)

● y ∊ {0,1} : 0 is malignant , 1 is benign
● X has only one feature

Can we adapt Linear Regression for a classification task?

(Yes) 1

(No) 0

Tumor size

Malignant ?

X   X   X    X    

X   X   X    X       
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● We can find the best Y = WT X from our dataset and then select a threshold 
over y to classify when the tumor is malignant or not 

Can we adapt Linear Regression for a classification task?

(Yes) 1

(No) 0

Tumor size

0.5

X   X   X    X    

X   X   X    X       

Y = WT X

t
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● Does it really work? Or we were just lucky? What happens if i add another 
training example ?

Can we adapt Linear Regression for a classification task?

(Yes) 1

(No) 0

Tumor size

0.5

X   X   X    X                X    

X   X   X    X       
t

These are now misclassified
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● Moreover, linear regression returns a y that is not bounded between 0 and 1

● We want a hW(X) bounded:  0<= hW(X) <= 1, the simplicity of a linear 
regression and a good fit to our binary classification task

○ y = hW(X) = 𝞼(WTX)

● Logistic regression (sigmoid) can be the perfect solution

Logistic regression
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Logistic function
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● Logistic regression (despite the name) is a classification algorithm
● The name is due to the past when the logit function was invented and used as 

a regression algorithm
● As a classification algorithm it estimates the probability that an instance 

belongs to a class or not (Binary classification).
○ If the estimated probability is greater than 50% then the model predicts 

that class

● The logistic function is a sigmoid function ( S-shape) that outputs a number 
between 0 and 1

Logistic Regression
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Logistic function

● Just like a linear regression model, a logistic regression computes a weighted 
sum of the input features plus a bias term

● But instead of returning the result directly, it outputs the logistic of this result
○ So when the probability that an instance belongs to the positive class is 

computed, the y* can be computed easily:
■ Class 0 (or negative) if p < 0.5
■ Class 1 (or positive) if p>= 0.5

● When possible labels are more than two, several binary classifier are built to 
identify the correct class
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● In our case, hW(X) with Logistic regression estimated the probability that y=1 on 
input X

● For example, If hW(X) = 0.7 for a sample x , It means that patient has the 
probability of 70% of having a malignant tumor.

● If you are familiar with probability, we can see hW(X) in the following way:

○ hW(X) = P(y=1 | X; W)

○ The probability that y=1 given X parametrized by W

Logistic function



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Decision boundaries

● We predict y=1 when hW(X) >= 0.5 that means when WTX >=0 and vice-versa 
for y=0 
○ Remember y = hW(X) = 𝞼(WTX)    with 
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Decision boundaries

● Suppose the case we have the dataset in figure, with 2 features X1 and X2 
○ We trained a Logistic regression and we found that the best parameters W 

are respectively W0= -3 , W1=1 , W2=1

hW(X) = g(w0 + w1x1 + w2x2 )
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Decision boundaries

● We predict y=1 when -3 + x1 + x2 >= 0
○ So when  x1 + x2 >= 3

The green line is an example of a 
decision boundary

Note: Decision boundary is not a property of 
the training set! 
Training set must be used to fit the 
parameters w!
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Non-linear decision boundaries

hW(X) = g(w0 + w1x1 + w2x2 +

                w3  x
2

 1+ w4  x
2

 2 )
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Learning: An optimization problem (again)

How to choose parameters W ?
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Learning: An optimization problem (again)

This cost function definition 
introduces a non linearity that 
makes the function we want 
to minimize non-convex

With a Non-convex function, there are not guarantees to converge in a global 
optimum
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Learning: An optimization problem 

Let’s define the cost function in the following way to have a convex function

yi
*

Cost = 0 if y=1 and y*=1
Cost -> ∞ if y=1 and y*= 0

We will penalize learning algorithm by a very
         large cost

yi
*
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Learning: An optimization problem 

Merge Cost in a single function and apply Gradient Descent

Repeat until convergence {

}
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● Commonly the world is not binary and we want to classify our data in more than two 
classes!
○ For example: Iris dataset: Versicolor, Virginica, Setosa ( 3 classes!)

● In this case we say that the problem is multi-class

● Another case is when we want to predict for each sample more than one label and 
these are not mutually exclusive
○ Example Face Recognition
○ Example Topic detection: we want to classify technical documentation and each 

document can be associate to more than one label 
■ A paper can be classified about its topic “Computer science” and then also 

with its subtopics “Artificial Intelligence” 
○ Every sample can be associated to one or more labels
○ It is a more complex task and we won’t talk about it in this course but remember 

that is called a multi-label task

Multi-class classification
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● Example: We have three classes to be predicted:  

● We train a Logistic classifier, but wait! Logistic classifier can predict only on a 
binary case!

● The solution is the One-vs-ALL (One-vs-Rest) approach:
○ We train one classifier for each class that should be recognized. If three 

classes -> Three classifiers
○ The first one will recognize if the sample is a dot or other, the second one 

if the sample is a square or other, the third if the sample is a triangle or 
other.

● So we have a model hw
(i)(x) = P(y=i | x; w)    where i is the class, i=1,2,3

Multi-class classification: One-vs-ALL
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● Considering hw
(i)(x) = P(y=i | x; w)    where i is the class, i=1,2,3

● Try to classify a sample considering the probabilities of each classifier:
○ P(y=    | x; w)

○ P(y=    | x; w)

○ P(y=    | x; w)

● To make a prediction we have to pick the class i that maximize hw
(i)(x)

Multi-class classification: One-vs-ALL
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Multi-class classification: One-vs-ALL

x2

x1

x2

x1

x2

x1

x2

x1

Dataset

hw
1(x)

hw
2(x)

hw
3(x)
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● Evaluating a classifier is often significantly tricker than evaluating a regressor
● Several metrics are possible but their use depends on the case:

○ Confusion matrix
○ Accuracy
○ Precision
○ Recall
○ F-1 measure
○ ROC Curve

● So…grab a coffee before

How to evaluate a classification task?
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BREAK
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Number of Instances
150 (50 in each of three classes)

Number of Attributes
4 numeric, predictive features and the class

Features Information
● sepal length in cm
● sepal width in cm
● petal length in cm
● petal width in cm
● class:

○ Iris-Setosa
○ Iris-Versicolor
○ Iris-Virginica

Example: Iris plants dataset
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Confusion matrix

● The diagonal elements represent the number of points for which the 
predicted label is equal to the true label. The off-diagonal elements are 
those that are mislabeled by the classifier.

● Perfect classification: diagonal matrix
Total Predicted

Iris-setosa Iris-versicolor Iris-virginica

Real 
class

Iris setosa 14 1 1

Iris-versicolor 0 16 0

Iris-virginica 0 1 15

Accuracy = (14+16+15)/48   
= 0,9375

from sklearn.metrics import confusion_matrix
confusion_matrix(y_true, y_pred)

from sklearn.metrics import accuracy_score
accuracy_score(y_true, y_pred)



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

● To evaluate a classification model we can use the accuracy

● The accuracy is defined as the ratio among the number of correct predictions 
over the total number of predictions

● The accuracy is often expressed as a percentage

● If the test-set is unbalanced we must use other metrics 

Accuracy
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● Suppose you want to classify if in an image there is a cat or a dog

● Your dataset has 800 images of cats and 200 images of dogs

● We use 100 images for the test, but in this test-set we randomly selected:
○ 90 cats
○ 10 dogs

● The accuracy on the test-set is 90%
○ What does this accuracy mean?
○ If I use a “dummy” script that says every time “cat” without any learning it 

reaches the same accuracy
○ But if the test-set were balanced the “dummy” script would reach only 

50% of accuracy

Accuracy: Balanced test-set required
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● If I use a “dummy” script that says every time “cat” without any learning it reaches 
the same accuracy
○ But if the test-set were balanced the “dummy” script would reach only 50% of 

accuracy
○ That’s why the test-set MUST BE BALANCED if you want to measure the 

accuracy!

● What about the training-set ? Do we have to balance also it ?
○ It depends, if the training-set is unbalanced probably the less representative 

class will be less learnt by the model
○ It means that the model will probably predict that class less than the others 

because it will be less confident with that class
○ Usually it is better to have an almost balanced training-set, but sometimes we 

could desire to predict a label less than another
○ So finally, the answer it remains: It depends…

Accuracy: Balanced test-set required
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● We need some metrics that does not take into account only how many times the 
classifier gives the correct prediction in general but a metric we can compute for 
each class

● Let M be the chosen metric
● Once we measured M for each class (so the we do not suffer the unbalanced 

condition) we can resume a final measure for the classifier as an average among 
the ones we got for each class. In some cases we can report only M for each class 
without a final measure for the entire classifier

● The most simple case is the binary classification case where we can compute M 
for the “positive” label or for both “positive” and then for the “negative”

If unbalanced  test (validation) 
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Precision

● In a binary classification we can divide predictions in True Positive (TP), 
True Negative (TN), False positive (FP), False Negative (FN)

Predicted

Negative Positive

Real 
class

Negative TN FP

Positive FN TP

● It is like an accuracy on a single class

● Alone does not give enough information 
since a trivial way to have a perfect 
(precision = 1/1 = 100% ) is to use a 
test-set with just one example

● So usually precision is used along with 
another metric called Recall that takes 
into account the False negative

from sklearn.metrics import precision_score
precision_score(y_true, y_pred)
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Recall and F-1 Score

● In a binary classification we can divide predictions in True Positive (TP), 
True Negative (TN), False positive (FP), False Negative (FN)

Predicted

Negative Positive

Real 
class

Negative TN FP

Positive FN TP

from sklearn.metrics import recall_score
recall_score(y_true, y_pred)

from sklearn.metrics import f1_score
f1_score(y_true, y_pred)
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To summarize

● Precision can be thought as the accuracy of the positive 
predictions

● Recall (also known as Sensitivity or True positive rate) 
is the ratio of positive instances that are correctly 
detected by the classifier

● F1 is the harmonic mean of precision and recall. 
Whereas the regular mean treats all values equally, the 
harmonic one gives much weight to low values. As a 
consequence we can get a high F1 score only if both 
precision and recall are high 

For the other metrics: see sklearn documentation: 
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
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How to choose among the metrics?

● It depends (again)
● F-1 is a good compromise because it favors classifiers that have similar precision and 

recall. However, sometimes we would prefer to have a different value of precision and 
recall

● Let’s make some examples (from A.Gèron):

● You trained a classifier to detect videos that are safe for kids
○ You would probably prefer a classifier that rejects many good videos (low recall) but 

keeps only safe ones (high precision) rather than a classifier that has a much higher 
recall but lets a few really bad videos show up in your product

● You trained a classifier to detect shoplifters on video-surveillance images
○ It is probably fine if your classifier has only 30% precision as long as it has 99% 

recall
■ Sure, the security guards will get a few false alerts, but almost all shoplifters will 

get caught!
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import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

# import some data to play with
iris = datasets.load_iris()
X = iris.data  # we only take the first two features.
y = iris.target

logreg = LogisticRegression()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, stratify=y)

Example of Logistic Regression
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# Create an instance of Logistic Regression Classifier and fit the data.
logreg.fit(X_train, y_train)

# Make predictions using the testing set
y_pred = logreg.predict(X_test)
acc= accuracy_score(y_test, y_pred)
print(acc)

Iris plants
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● Machine learning model with a flowchart-like structure

● Each internal nodes represents a “test” on a feature of our dataset

● Final nodes (leaf) are the predicted class or value

● Available both for classification and regression tasks

What is a decision tree ?
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Example: Iris dataset

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier,plot_tree
import matplotlib.pyplot as plt

iris=load_iris()
X =iris.data[:,2:] #petal length and width
y = iris.target

clf=DecisionTreeClassifier(max_depth=2)
clf.fit(X,y)
plot_tree(clf, filled=True)
plt.show()
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Iris decision tree

● X[0] : petal length
● X[1]: petal width
● Gini: Impurity metric

○ A node is “pure” if Gini=0
■ If all training instances it applies to 

belong to the same class

● Gini for the depth-2 left node is
1 - (0/54)2 - (49/54)2 - (5/54)2

  = 0.168
● Ratios corresponds also to output probabilities:

○ 0% for Iris-setosa
○ 90.7% for iris-Versicolor
○ 9,3% for iris-Virginica

True False



 Gianfranco Lombardo, Ph.D  (gianfranco.lombardo@unipr.it)

Decision boundaries
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● CART (Classification and Regression Tree algorithm)
● Simple idea:

a. Splits the training set in two subsets using a single feature k and a 
threshold tk (e.g., “petal length <= 2.45”)

b. To choose k and tk it looks for the purest subsets (weighted by their size) 
minimizing a cost function

c. It stops once it reaches the maximum depth selected as a parameter

CART training algorithm
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● Another impurity measure is the Entropy
○ In Thermodynamics is a measure of molecular disorder and it is zero when 

molecules are well ordered
○ In Information Theory, it measures the average information content of a message 

(Shannon’s theorems) and it is zero when all messages are identical
● In Machine Learning a set’s entropy is zero when it contains instances of only one 

class.

● Most of the time choosing Gini or Entropy does not introduce a big difference. Giny is 
usually faster to compute and tends to isolate the most frequent class in its own branch 
of the tree, while Entropy tends to produce slightly more balanced trees

Gini VS Entropy
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● The algorithm splits each region in a way that makes most training instances 
as close as possible to the value to be predicted

● In sklearn import DecisionTreeRegressor

Regression with Decision trees
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Regression with Decision trees

● The CART algorithm works exactly the same way as earlier, except that instead 
of trying to split the training set to minimize the impurity, it now tries to split to 
minimize the Mean Squared Error (MSE)
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● Decision trees make less assumptions about the training data with respect to linear 
models 

● If left unconstrained the tree structure will adapt itself to the training-set very well !
○ Actually, most of the time it overfits the training-set !

● Decision trees are often called nonparametric models
○ Not because they don’t have any parameters but because the n° of parameters is 

not determined prior to training
○ The model structure is free to stick closely to the data

● On the opposite, a parametric model (such as linear model) has a predetermined 
number of parameters, it has a limited degree of freedom and that is useful to reduce 
the overfitting (but increasing the risk of underfitting)

Problems: Overfitting
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● One solution can be reduce the degree of freedom of the model during the 
training phase (Regularization)
○ Select a max depth
○ Select a a minimum number of samples a leaf node must have 
○ Select a max feature number that are evaluated for splitting each node

○ Pruning: First training the tree without restrictions and then deleting 
unnecessary nodes. 
■ For example, a node whose children are all leaf nodes can be 

considered unnecessary if the purity improvement it provides it si not 
statistically significant ( the improvement is purely random and it’s 
measured with a p-value

Solution: Regularization
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Regularization with min sample leaf
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● The DecisionTreeClassifier offers the following parameters:

○ min_samples_split: Select a a minimum number of samples a leaf node 
must have before it can be split 

○ min_samples_leaf: Minimum number of samples a leaf node must have

○ min_weight_fraction_leaf: Same as min_samples_leaf but expressed as 
a fraction of the total number of weighted instances

○ max_leaf_nodes: Maximum number of leaf nodes

○ max_features: Maximum number of features that are evaluated for 
splitting each node

Regularization in Sklearn


